Low-molecular-weight heparin from Cu2+ and Fe2+ Fenton type depolymerisation processes.
نویسندگان
چکیده
Hydrogen peroxide (H2O2) and Cu(OAc)2 or FeSO4 (Fenton type reagents) perform heparin (Hep) depolymerisation to low-molecular-weight heparin (LMWH) following a radical chain mechanism. Hydroxyl (OH) radicals which are initially generated from H2O2 reduction by transition metal ions abstract hydrogen atoms on the heparin chain providing carbon centred radicals whose decay leads to the depolymerisation process. The main depolymerisation mechanism involves Hep radical intermediates that cleave the glycosidic linkage at unsulphated uronic acids followed by a 6-O-nonsulphated glucosamine, thus largely preserving the pentasaccharide sequence responsible for the binding to antithrombin III (AT). Both the transition metal ions influence the overall efficiency of the radical chain processes: Fe2+ acting as a catalyst, while Cu2+ acts as a reagent. LMWHs, especially those afforded by Cu2+, are somewhat unstable to the usual basic workup. However, this lack of stability can be eliminated by a previous NaBH4 reduction. Furthermore, with Cu2+, the process is much more reproducible than with Fe2+. Therefore, for the process of Fenton type depolymerisation of heparin, the use of Cu(OAc)2 is clearly preferable to the more "classical" FeSO4. The resulting activities and characteristics of these LMWHs are peculiar to these oxidative radical processes. In addition, LMWH provided by H2O2/Cu(OAc)2 in optimised conditions was found to posses anti-Xa and anti-IIa activities comparable to those of LMWHs currently in clinical use.
منابع مشابه
Generation of *OH initiated by interaction of Fe2+ and Cu+ with dioxygen; comparison with the Fenton chemistry.
UNLABELLED Iron and copper toxicity has been presumed to involve the formation of hydroxyl radical (*OH) from H2O2 in the Fenton reaction. The aim of this study was to verify that Fe2+-O2 and Cu+-O2 chemistry is capable of generating *OH in the quasi physiological environment of Krebs-Henseleit buffer (KH), and to compare the ability of the Fe2+-O2 system and of the Fenton system (Fe2+ + H2O2) ...
متن کاملChemical Oxygen Demand Removal from Synthetic Wastewater Containing Non-beta Lactam Antibiotics Using Advanced Oxidation Processes: A Comparative Study
Background & Aims of the Study: Pharmaceuticals are considered as an emerging environmental problem due to their continuous discharge and persistence to the aquatic ecosystem even at low concentrations. The purpose of this research was the investigation of advanced oxidation processes (Fenton and Fenton-like) efficiency for the removal of nonbeta lactam Antibiotics of azithromycin and clari...
متن کاملمطالعه بهبود قابلیت تجزیه پذیری شیرابه زباله به روش اکسیداسیون فنتون
Backgrounds and Objectives: Leachate is one of the landfill products and also a wastewaterbearing the most advers effects on the environment. Biological methods are usually employed for treatment of young leachate (1-2 years) wich is of high concentration of organic compounds with low molecular weight. However these methods are not approprate for mature leachate (5-10years) due to having high r...
متن کاملPotential of Wood-Rotting Fungi to Attack Polystyrene Sulfonate and Its Depolymerisation by Gloeophyllum trabeum via Hydroquinone-Driven Fenton Chemistry
Synthetic polymers often pose environmental hazards due to low biodegradation rates and resulting accumulation. In this study, a selection of wood-rotting fungi representing different lignocellulose decay types was screened for oxidative biodegradation of the polymer polystyrene sulfonate (PSS). Brown-rot basidiomycetes showed PSS depolymerisation of up to 50 % reduction in number-average molec...
متن کاملLandfill Leachate Treatment through Electro-Fenton Oxidation
Advanced Oxidation Processes (AOPs) have been employed to degrade biorefractory organic matters. This study investigates the combination of classical Fenton reaction with electrochemical oxidation, the electro-Fenton process, for the treatment of semi aerobic landfill leachate, collected from Pulau Burung Landfill Site (PBLS), Penang, Malaysia. The investigation has been carried out in batch re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Thrombosis and haemostasis
دوره 103 3 شماره
صفحات -
تاریخ انتشار 2010